

# **STAG**



## **Balancing valves**

Balancing valve with grooved ends – DN 65-300



## STAG

A grooved end, ductile iron balancing valve that delivers accurate hydronic performance in an impressive range of applications. STAG is ideal for use mainly on the secondary side in heating and cooling systems.

## **Key features**

## > Handwheel

Equipped with a digital read-out, the handwheel ensures accurate and straightforward balancing.

- > Self-sealing measuring points
  - For simple, accurate balancing.
- Positive shut-off function For easy maintenance.



## **Technical description**

#### **Applications:**

Heating and cooling systems.

#### **Functions:**

Balancing

Pre-setting

Measuring

Shut-off (The balancing cone is pressure released).

#### **Dimensions:**

DN 65-300

#### Pressure class:

Class 150

#### Temperature:

Max. working temperature: 120°C For higher temperatures (max. 150°C), please contact the nearest sales office. Min. working temperature: -20°C

#### Media:

Water or neutral fluids, water-glycol mixtures (0-57%).

#### Material:

Body: Ductile iron EN-GJS-400-15.
DN 65-150: Bonnet, cone and spindle of

DN 200-300: Bonnet and cone of ductile iron EN-GJS-400-15, spindle of AMETAL®.

Seals: EPDM. Slip washer: PTFE.

Bonnet bolts: Surface treated steel. Measuring points: AMETAL® and EPDM. Handwheel: DN 65-150 polyamide,

DN 200-300 aluminium.

AMETAL® is the dezincification resistant alloy of IMI Hydronic Engineering.

#### Surface treatment:

DN 65-200: Epoxy painting. DN 250-300: Duasolid painting.

#### Marking:

Body: TA, Class 150, inch size, flow direction arrow, material and casting date (year, month, day).

CE-marking: CE: DN 65-125

CE 0409\*: DN 150-300 \*) Notified body.

#### Face to face length:

ISO 5752 series 1, BS 2080 and EN 558-1 series 1.



## **Measuring points**

Measuring points are self-sealed. Remove the cap and insert the probe through the seal.

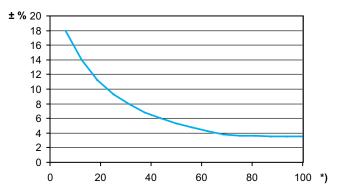
## **Sizing**

When  $\Delta p$  and the design flow are known, use the formula to calculate the Kv value or use the diagram.

$$Kv = 0.01 \frac{q}{\sqrt{\Delta p}} \qquad q \text{ I/h, } \Delta p \text{ kPa}$$

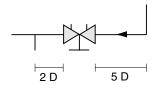
$$\mathsf{Kv} = 36 \; \frac{\mathsf{q}}{\sqrt{\Delta \mathsf{p}}} \qquad \mathsf{q} \; \mathsf{l/s}, \Delta \mathsf{p} \; \mathsf{kPa}$$

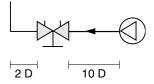
## Kv values


| Turns | DN 65-2 | DN 80 | DN 100 | DN 125 | DN 150 | DN 200 | DN 250 | DN 300 |
|-------|---------|-------|--------|--------|--------|--------|--------|--------|
| 0.5   | 1,8     | 2     | 2,5    | 5,5    | 6,5    | -      | -      | -      |
| 1     | 3,4     | 4     | 6      | 10,5   | 12     | -      | -      | -      |
| 1.5   | 4,9     | 6     | 9      | 15,5   | 22     | -      | -      | -      |
| 2     | 6,5     | 8     | 11,5   | 21,5   | 40     | 40     | 90     |        |
| 2.5   | 9,3     | 11    | 16     | 27     | 65     | 50     | 110    | -      |
| 3     | 16,3    | 14    | 26     | 36     | 100    | 65     | 140    | 150    |
| 3.5   | 25,6    | 19,5  | 44     | 55     | 135    | 90     | 195    | 230    |
| 4     | 35,3    | 29    | 63     | 83     | 169    | 120    | 255    | 300    |
| 4.5   | 44,5    | 41    | 80     | 114    | 207    | 165    | 320    | 370    |
| 5     | 52      | 55    | 98     | 141    | 242    | 225    | 385    | 450    |
| 5.5   | 60,5    | 68    | 115    | 167    | 279    | 285    | 445    | 535    |
| 6     | 68      | 80    | 132    | 197    | 312    | 340    | 500    | 620    |
| 6.5   | 73      | 92    | 145    | 220    | 340    | 400    | 545    | 690    |
| 7     | 77      | 103   | 159    | 249    | 367    | 435    | 590    | 750    |
| 7.5   | 80,5    | 113   | 175    | 276    | 391    | 470    | 660    | 815    |
| 8     | 85      | 120   | 190    | 300    | 420    | 515    | 725    | 890    |
| 9     | -       | -     | -      | -      | -      | 595    | 820    | 970    |
| 10    | -       | -     | -      | -      | -      | 650    | 940    | 1040   |
| 11    | -       | -     | -      | _      |        | 710    | 1050   | 1120   |
| 12    | -       | -     | -      | -      | -      | 765    | 1185   | 1200   |
| 13    | -       | -     | -      | -      | -      | -      | -      | 1320   |
| 14    | -       | -     | -      | -      | -      | -      | -      | 1370   |
| 15    | -       | -     | -      | -      | -      | -      | -      | 1400   |
| 16    | -       | -     | -      | -      | -      | -      | -      | 1450   |

## Measuring accuracy

The handwheel zero position is calibrated and must not be changed.


#### **Deviation of flow at different settings**


The curve holds for valves with the correct flow direction, straight pipe distances (Fig. 1) and normal pipe fittings.



\*) Setting (%) of fully open valve.

Fig. 1





D = Valve DN

## **Correction factors**

The flow calculations are valid for water ( $\pm 20^{\circ}$ C). For other liquids with approximately the same viscosity as water ( $\pm 20^{\circ}$ CSt =  $3^{\circ}$ E=100S.U.), it is only necessary to compensate for the specific density. However, at low temperatures, the viscosity increases and laminar flow may occur in the valves.

This causes a flow deviation that increases with small valves, low settings and low differential pressures. Correction for this deviation can be made with the software HySelect or directly in our balancing instruments.

## **Setting**

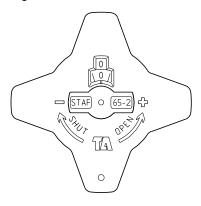
It is possible to read the set value on the handwheel. The number of turns between the fully open and closed positions is:

8 turns for DN 65-150,

12 turns for DN 200-250 and

16 turns for DN 300.

Initial setting of a valve for a particular pressure drop, e g corresponding to 2.3 turns on the graph, is carried out as follows:


- 1. Close the valve fully (Fig 1)
- 2. Open the valve to 2.3 turns (Fig. 2).
- **3.** Using an Allen key, turn the inner spindle clockwise until the stop position.
- **4.** The valve is now set.

To check the setting of a valve, first close the valve, then open it to the stop position; the indicator then shows the presetting number, in this case 2.3 (Fig. 2).



#### Example DN 65

Fig. 1 Valve closed



Example DN 200

Fig. 1 Valve closed

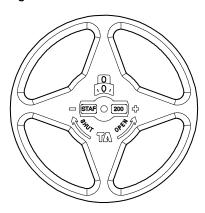



Fig. 2 The valve is set at 2.3

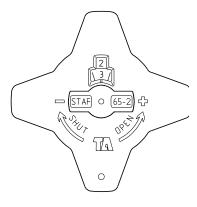
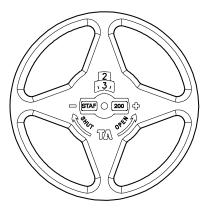




Fig. 2 The valve is set at 2.3



## **Diagram example**

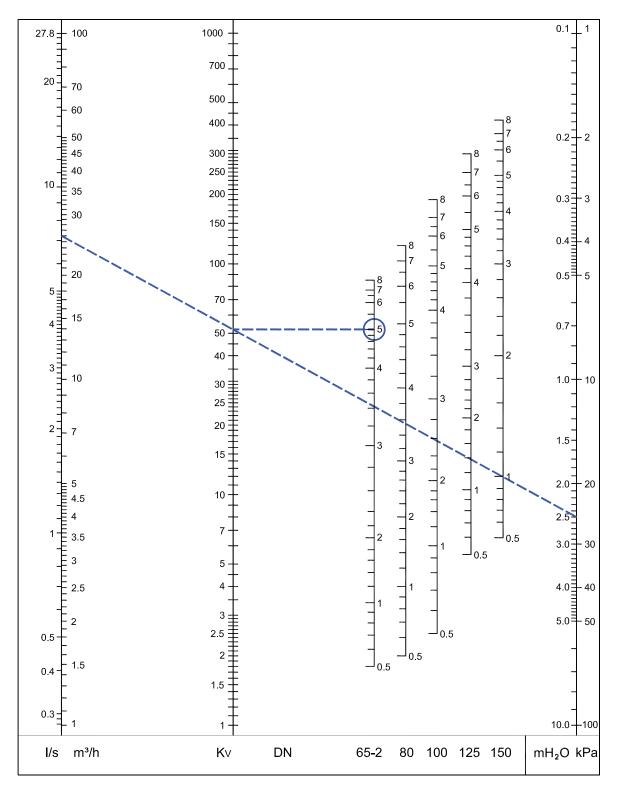
## Wanted:

Presetting for DN 65 at a desired flow rate of 26  $\,\mathrm{m}^3/\mathrm{h}$  and a pressure drop of 25 kPa.

## Solution:

Draw a straight line joining 26  $\rm m^3/h$  and 25 kPa. This gives Kv=52.

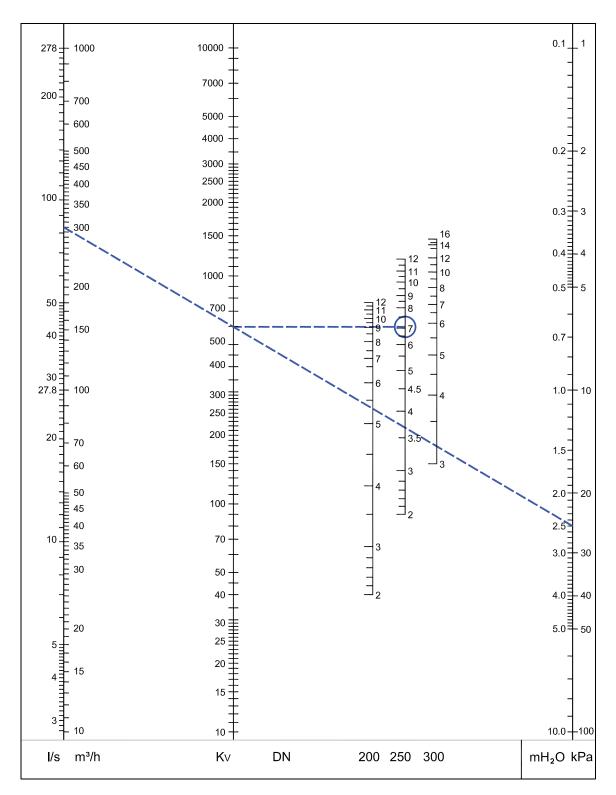
Now draw a horizontal line from Kv=52.


This intersects the bar for DN 65 at the desired presetting of 5 turns.

### NOTE:

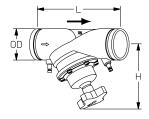
If the flow rate falls outside the scale in the diagram, the reading can be made as follows:

Starting with the example above, we get 25 kPa, Kv = 52 and flowrate 26 m³/h. At 25 kPa and Kv = 5.2 we get the flow-rate 2,6 m³/h, and at Kv = 520, we get 260 m³/h. That is, for a given pressure drop, it is possible to read 10 times or 0.1 times the flow and Kv-values.


## **Diagram DN 65-150**



Recommended area: See Fig. 3 under "Measuring accuracy".




## Diagram DN 200-300



Recommended area: See Fig. 3 under "Measuring accuracy".

#### **Articles**



#### **Bolted bonnet**

Measuring points on body

## Class 150, ISO 4200

| DN                | D     | L   | Н   | Kvs  | Kg   | EAN           | Article No |
|-------------------|-------|-----|-----|------|------|---------------|------------|
| 65-2              | 73.0  | 290 | 205 | 85   | 6.4  | 7318792831904 | 52 183-073 |
| 65-2              | 76.1  | 290 | 205 | 85   | 6.4  | 7318792832000 | 52 183-076 |
| 80                | 88.9  | 310 | 220 | 120  | 9.1  | 7318792832109 | 52 183-089 |
| 100               | 114.3 | 350 | 240 | 190  | 14   | 7318792832208 | 52 183-114 |
| 125               | 139.7 | 400 | 275 | 300  | 22.7 | 7318792832307 | 52 183-140 |
| 125               | 141.3 | 400 | 275 | 300  | 22.7 | 7318792832406 | 52 183-141 |
| 150 <sup>1)</sup> | 165.1 | 480 | 285 | 420  | 31.3 | 7318792832505 | 52 183-165 |
| 150               | 168.3 | 480 | 285 | 420  | 31.3 | 7318792832604 | 52 183-168 |
| 200               | 219.1 | 600 | 430 | 765  | 63.5 | 7318792832703 | 52 183-219 |
| 250               | 273   | 730 | 420 | 1185 | 92   | 7318792832802 | 52 183-273 |
| 300               | 323.9 | 850 | 480 | 1450 | 127  | 7318792832901 | 52 183-324 |

1) Not conforming to ISO 4200.

 $\rightarrow$  = Flow direction

 $Kvs = m^3/h$  at a pressure drop of 1 bar and fully open valve.

## **Accessories**



## Measuring point

AMETAL®/EPDM

| d         | L   | EAN           | Article No |
|-----------|-----|---------------|------------|
| DN 65 - 3 | 00  |               |            |
| R3/8      | 45  | 7318792813009 | 52 179-008 |
| R3/8      | 101 | 7318792814501 | 52 179-608 |



### Measuring point, extension 60 mm

(not for 52 179-000/-601)

Can be installed without draining of the system.

AMETAL®/Stainless steel/EPDM

| L  | EAN           | Article No |
|----|---------------|------------|
| 60 | 7318792812804 | 52 179-006 |



#### Identification tag

| <br>EAN       | Article No |
|---------------|------------|
| 7318792779206 | 52 161-990 |



## Handwheel

Complete

| DN        | EAN           | Article No |   |
|-----------|---------------|------------|---|
| 65 - 150  | 7318792834806 | 52 186-002 |   |
| 200 - 300 | 7318792835001 | 52 186-004 | _ |



### Allen key

For locking of setting.

| [mm] | For DN    | EAN           | Article No |   |
|------|-----------|---------------|------------|---|
| 3    | 65 – 150  | 7318792836008 | 52 187-103 |   |
| 5    | 200 – 300 | 7318792836107 | 52 187-105 | Т |

